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Abstract— Deep convolutional neural networks (CNNs) have
reformed numerous fields, comprising computer vision and
natural language processing. Nevertheless, CNNs' computational
complexity frequently raises obstacles to utilization on resource-
constrained devices. Different optimization strategies have been
proposed in response to this issue, comprising quantization,
knowledge distillation, and pruning. This paper familiarizes a
novel pruning method, Feature Map Importance Pruning (FMIP),
designed to optimize the performance of deep CNNs while
reducing computational costs. The FMIP computes the
importance of feature maps within convolutional layers
according to the area of their activation values, facilitating a
systematic approach to pruning decisions. By detecting and
eliminating the redundant feature maps, FMIP can considerably
cut the number of parameters and FLOPs in a CNN model
without conceding accuracy. This is chiefly advantageous for
using CNNs on devices with limited memory and computational
power.

We evaluated FMIP on various CNN architectures, including
VGG16 and ResNet50, using datasets such as CIFAR-10 and
ImageNet. Our experiments demonstrated significant model
compression while preserving high accuracy. Specifically, FMIP
achieved the following results: VGG16 with CIFAR-10
demonstrated an 81.9% reduction in parameters and a 48.6%
reduction in FLOPs, with an accuracy of 93.33%. ResNet50 with
ImageNet achieved an 83.11% reduction in parameters and a
71.55% reduction in FLOPs, with an accuracy of 92.03%.
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compression, Filter Pruning, Optimization

1 INTRODUCTION

To enhance the efficiency of Convolutional Neural
Networks (CNNs), researchers have utilized advanced
techniques across various machine learning domains, such as
object detection [1], [2], fault detection in UAVs [3], and
image recognition [4], [5]. However, achieving outstanding
results also poses significant challenges. These challenges
include complex architectures that are suboptimal regarding
memory usage and require substantial computational resources,
particularly for embedded and mobile devices. Additionally,
these architectures incur considerable costs during inference.
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Consequently, model compression has garnered significant
attention from researchers as a means to address the size issue
of CNN architectures. Even so, CNNs are inherently
computationally intensive, leading to a substantial increase in
floating-point operations (FLOPS) [6] due to the extensive
trainable parameters and convolution operations involved.

In recent years, researchers have proposed various model
compression and acceleration methods [6], [7], [8]. Based on
pruning granularity, network pruning can be categorized into
unstructured pruning [9] and structured pruning [10]. A
common form of unstructured pruning is weight pruning,
which reduces network parameters by eliminating insignificant
weights in the filters. Unstructured pruning requires specialized
software or hardware for model acceleration, whereas
structured pruning does not face this issue. Consequently,
structured pruning has garnered more attention in recent years.
Structured pruning primarily involves filter pruning.

The key to filter pruning lies in selecting which filters to
remove. Our proposed pruning strategy FMIP (Feature Map
Importance Pruning) is based on the feature map area, targeting
layers and ranking feature maps according to "area" in terms of
the magnitude of activations. This approach provides a clear,
interpretable metric to evaluate the importance of each filter in
the network. The underlying assumption is that feature maps
with smaller activations (areas) contribute less to the overall
task and can be safely removed, thereby reducing the model’s
complexity. Nevertheless, we rank the feature maps by their
scores, which reflect how "active" or "informative" (see Figure
1). This approach is computationally efficient because
calculating the area involves only basic summations, making it
practical even for large models. Moreover, the combination of
iterative pruning and fine-tuning enables the network to
gradually adapt to the removal of less significant filters,
thereby minimizing the performance loss that often occurs with
more aggressive pruning methods.

2 LITERATURE REVIEW

The primary objective of filter pruning is to assess the
significance of filters and eliminate those considered
unimportant [11], [12]. Consequently, re-training is necessary
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after each pruning step to compensate for the reduction in
accuracy. In reference [13], the importance of filters was
evaluated using a portion of the training data based on the
output feature map. In [14], pruning was performed using a
greedy technique that determined filter importance by
evaluating the model’s accuracy post-pruning. Additionally, in
[15], feature maps, or pruning activations, were employed to
create faster CNNs. This method involves removing filters
from specific input locations while often retaining them in
other locations, resulting in minimal overall filter compression.
This approach may also be viewed as excluding filters at
specific input locations, but these filters are often retained at
other locations, leading to limited filter compression.

In [16] employs high-rank feature map selection for filter
pruning. HRank ranks feature maps based on their information
content using matrix rank, ensuring that the most significant
feature maps are preserved during pruning. Another method
named SCSP (Spectral Clustering Filter Pruning) was
introduced in [17], which employs a self-adaptive method to
prune filters, concentrating on the spectral characteristics of
filters. Our proposed strategy “Feature Map Importance
Pruning (FMIP) differs from these methods. Firstly, it is more
geometrically motivated by spatial coverage, offering a more
straightforward metric that can be easily interpreted in terms of
input space activation. Secondly, it is based on the area under
feature map activations, concentrating on measuring the spatial
activation area rather than rank, providing it with a unique
advantage in understanding the feature map’s contribution
through the coverage area. Furthermore, this method is less
computationally intensive than spectral clustering or HRank
techniques, making it simpler to implement and potentially
quicker to execute without extensive fine-tuning.
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Figure 1 Feature Map Importance Pruning (FMIP) Process

3 PRUNING FILTERS VIA RANK AND IMPORTANCE

To optimize (CNNs) through weighing and pruning feature
maps characterized by their importance scores, which can be
conceptually associated with their active “area” of contribution
across each layer. we set off with the activation values
computation from the convolutional layers of the CNN model.

3.1 Ranking and Importance Score Calculation
For a specific convolutional layer n, let X signify the

input to the layer, and X, € RCn*H*W (with C,  is denoted

as the number of input channels, H implies the height, and W
is the width of the input). The convolution operation provides

feature maps L, as output, where:

L, =W, %X, +b, (1)

Now, W are denoted as convolutional filters of layer n
alongside dimensions C . x C;, x ky x k,, and b, denotes

the bias. The feature map activations L, € RCou*H>W " are
then acquired after implementing the convolutional filters,

where C,,, is the number of output channels, and H, W' are
the height and width of the output feature maps. The
importance of feature maps is calculated by determining the
spatial area covered by the activations in each feature map. The
area is decided through summing the absolute activations to

indicate its contribution to the forward pass. The area A; of

feature map I can be calculated as follows:

H w (2)
A= > |Ai,h,w|
h=1 w=1

Where A

i hw Means the value at position (h, w) in the i-th

w

w=1 stands for the raw

feature map of a certain layer. ZhH=1 >

area score, determining the contribution of feature map i. We
apply Min-Max Normalization to the areas A; before ranking

the feature maps for pruning. To scale the values between 0
and 1, we ensure that the importance scores are uniformly
scaled throughout all feature maps. The normalized importance

score I ; is calculated as:
. A, — min(A) (3)
" max(A) — min(A)

Where min(A) and max(A) signify the minimum and
maximum area values, respectively throughout all feature maps.
After normalization, the feature maps are ranked by their
normalized importance values. For example, Lower importance
scores imply that the equivalent feature map offers less to the
general activations and therefore can be intended for pruning.

Let the ranking be denoted via an ordered set R such that:

R =sort (I, 15, ..., 1) (4)

where n denoted as the total number of feature maps, the
sort function organizes the feature maps via their normalized
importance scores.

3.2 Pruning Criterion: Feature Map Area

We set a threshold T is used to prune a definite percentage

of feature maps. For instance, if T = 0.3, the bottom 30% of
feature maps according to their importance scores are pruned.



PruneF,ifl; < T (5)

where F; signifies the i-th feature map. The feature maps that
contribute the least to the network's activations are eliminated,
successfully dropping the number of filters. where T is the
threshold value defined by the pruning rate r". Pruning a feature
map F; requires the deletion of the connected filter W . In the

updated network, the pruned filters are efficiently neglected.
We then fine-tune the model to regulate the deficit of the
pruned feature maps. The final importance score, which
merges both the Min-Max Normalization and area-based
metric, can be defined as:

_ z:'=1 ZL [Aihwl — min(A) (6)

d max(A) — min(A)

Equation (6) is used for ranking and pruning the feature
maps in FMIP.

4 EXPERIMENTS

4.1 Ranking and Importance Score Calculation

We utilized the LeNet model on the MNIST dataset as a
prototype. To further demonstrate the efficiency of our
proposed approach in shrinking model size, we conducted
experiments on mainstream CNN architectures like VGG16
using the CIFAR10 and CIFAR100 datasets. We evaluated the
model's performance post-pruning by monitoring accuracy,
number of parameters, and required Floating Point Operations
(FLOPs). The effectiveness of FMIP was assessed by
comparing the performance before and after the pruning
process, ensuring that the model maintained its predictive
capability while achieving reduced complexity. Through this
systematic and iterative approach, FMIP effectively ranked
feature map areas and conducted a tailored pruning procedure
that enhanced CNN efficiency while preserving the essential
performance characteristics.

4.2 Hyperparameters Settings

All the experiments were conducted using the PyTorch
framework on an NVIDIA Tesla GPU, with the
execution environment Google Colab Pro. For the VGGI16
model on CIFAR-10 and ResNet50 on ImagNet, the settings
incorporate a layer-wise learning rate adjustment to fine-tune
the learning dynamics for each layer based on its position in
the network. In this setup, the learning rate for the initial
convolutional layers is set to a lower value, typically 0.001, as
these layers are responsible for learning the fundamental visual
features. For the middle layers, the learning rate is kept slightly
higher at around 0.005. The deeper layers, particularly the fully
connected layers, require more aggressive learning to adapt to
the classification task. Hence, the learning rate for these layers
is set at the base value of 0.01.

Unlike the LeNet-5 model on MNIST, a lower learning rate
of 0.001 as the task is simpler because of grayscale input
images. We used Stochastic Gradient Descent (SGD) with a
momentum value of 0.9 to provide stable updates during

training for every model. The training is set for 100 epochs
with a batch size of 128 for both ResNet50 and VGG16, but for
LeNet-5 batch size is set to 64. To avert the overfitting issue, a
weight decay (L2 regularization) of le-4 for LeNet-5 and Se-4
is applied for the ResNet50 and VGG16 models, respectively.
The model also applies data augmentation such as random
cropping and horizontal flipping to boost simplification.

5 RESULTS

In our prototype study, we applied the Feature Map
Importance Pruning (FMIP) method to the LeNet network
using the MNIST dataset. This approach led to a significant
reduction of 77% in network parameters and a 76.5% saving in
FLOPs. Impressively, despite this substantial pruning, the
model maintained an accuracy of 98.86%, which is only
marginally below the baseline accuracy of 99.21%.

Furthermore, we assign a pruning rate of 0.3 to the VGG16
network and perform iterative pruning. Our proposed FMIP
(Feature Map Importance Pruning) approach demonstrates
superior performance compared to existing filter pruning
methods. Table 1 shows the results for the VGG network, we
adopted the 16-layer model (comprising 13 convolutional and
3 fully connected layers) to work with the CIFAR-10 dataset.
Despite pruning 81.9% of the parameters and saving 48.6% of
FLOPs, we maintained an accuracy of 93.33%, only slightly
above our baseline accuracy. These optimizations significantly
enhance the VGG model's capability, a popular backbone for
object detection and semantic segmentation, to be efficiently
deployed on mobile devices.

TABLE L. TABLE 1VGG16 PRUNING PERFORMANCE ON CIFAR10

VGG-16 on CIFAR-10 datasets (Prune results)

Approach Baseline FLOPs Pruned | Accuracy (%)
(%) Saved (%) (%)

[18] 93.73 52.4 89.7 93.82

[19] 93.25 39.1 73.3 93.18

[20] - 41.6 73.8 93.02

FMIP 93.30 48.6 81.9 93.33

[21] - 42.5 82.2 90.73

For the ResNet50 network using the ImageNet dataset. This
approach resulted in the pruning of 83.11% of the network
parameters, concurrently achieving a 71.55% reduction in
FLOPs. Despite these significant modifications, the model
retained a commendable accuracy of 92.03%, marginally
below the original baseline accuracy of 92.40%. These
substantial optimizations highlight the efficacy of FMIP in
enhancing resource efficiency, thereby rendering ResNetS0
more suitable for deployment in environments with limited
computational resources (see Table 2).

TABLE II. TABLE 2 RESNET50 PRUNING PERFORMANCE ON IMAGENET
ResNet50 on ImageNet datasets (Prune results)

Approach Baseline FLOPs Pruned Accuracy (%)
(%) Saved (%) (%)

[20] - 68.95 72.94 91.91

[22] - 45.96 - 90.71

FMIP 92.40 71.55 83.11 92.03

[21] - 56.96 83.14 90.94




6 CONCLUSION

In conclusion, our proposed study exhibits the effectiveness
of Feature Map Importance Pruning (FMIP) as a method for
optimizing (CNNs). By systematically analyzing and
eliminating redundant feature maps according to their
contributions to the model's output, FMIP considerably shrinks
computational costs without conceding performance. Our
experiments on LeNet, VGG16, and ResNet50 networks
utilizing MNIST, CIFAR10, and ImageNet datasets (see Figure
2(a,b) reveal that FMIP can effectively streamline model
architecture while preserving vital features. Explicitly, we
perceived a reduction in computational cost with only an
insignificant reduction in accuracy on average across the
evaluated models.

These results emphasize the capability of FMIP to make
CNNs further practical for utilization in resource-constrained
environments, such as mobile devices and embedded systems.
Future research could examine the application of FMIP to other
CNN architectures and datasets, as well as investigate potential
combinations with other optimization methods to further boost
efficiency and performance.
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Figure 2 Pruned ResNet50 on ImageNet (a) and VGG16 on CIFARIO (b)
datasets with variable prune ratio
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